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Aligning models to user’s intentions



Goals
Foundations and familiarity with terms

● How are LLMs developed?
● What strategies can be used to get LLMs to 

solve a problem?
● Get familiar with terminologies used by 

researchers & practitioners to refer to variants 
of LLMs, trade-offs, and interaction strategies.



Short “Refresher” Version
Jump to the starting slide of 

the long version



Background: Pre-training

std. enc-dec Causal LM Prefix LM Masked LM

May <X> be with you
Inputs

<X> the force 
Targets

￼

figs: T5

https://arxiv.org/abs/2204.05832


Background: Scaling and zero shot capabilities 

? GPT4

?

fig: GPT3

https://arxiv.org/abs/2005.14165


Zero-shot? Adapting learned patterns to new situations



Fine-tuning

Enhanced for certain 
interactions. O(1000) 

to O(M) examples.
E.g. PaLM-Coder, 

Codex

Pre-training

Self-supervised, on 
lots of examples 

O(Trillion) tokens.
E.g. LLAMA

Model training

RL w. Human 
Feedback

Tuned to help model 
guess better under 

uncertainties. O(1000) 
examples.

E.g. Bard, ChatGPT

Prompt-tuning

Steered for focused tasks. 
O(100)examples

Prompting 
Steered for a query. O(1) 
examples (usually 0-8)

These slides = (Prompting + prompt-tuning and a dash of fine-tuning)

Pre-training, instruction based fine-tuning, RLHF - usually successive



Instruction 
tuned

Answer yes or no. 
Cheetahs are faster 
than hares. Answer:

E.g. FLAN-PaLM, 
InstructGPT

Raw LM

Continues to predict 
next tokens following 
a prompt

E.g. LLAMA, GPT3

Dialog tuned

[Alice] where is eve?
[Bob] she is out. 

[Alice] shall i call her in?
[Bob]: …

E.g. BlenderBot, Koala

RLHF

Human-Feedback to 
improve the model’s 

responses under 
uncertainties. 

E.g. Bard, ChatGPT

Available models



Models from different stages respond differently
Raw LM Trained to 

follow 
instructions

+ Dialog 
+ …
+ RLHF 

(as do different models)
PaLM, GPT3.5, Claude, LLAMA

Instruction Tuned

RLHF model



Note, LLMs are finicky



Few-shot

* Give a few examples
* Order & choice  might 
affect results
* Many ways to choose 
in-context examples.
* temperature, sampling

Chain-of-thought

* Walk through steps
* Ask model for 
intermediate outputs
* Give examples
* Ask model to verify steps

Zero-shot

* State your task
* Give the input
* For very long 
instructions, having 
some formatting “{}” 
might help.

Prompting

Summarize feedback 
from the comments.

c1: { … }, c2: {...}, … 
summary: { 

Given comments 
predict topic for each, 
and summarize inc. 

topic histogram.

Categorize comment ….
c: { … } t: { 10mins }
c: { … } t: { summer }

c: { … } t: { vegan }
c: { … } t: {



Chain-of-thought

* Walk through steps
* Ask model for 
intermediate outputs
* Give examples
* Ask model to verify steps
* Make a template of the 
above (e.g. ReAct, Tree of 
thought)

Zero-shot

* State your task
* Give the input
* For very long 
instructions, having 
some formatting “{}” 
might help.

Prompting

Summarize feedback 
from the comments.

c1: { … }, c2: {...}, … 
summary: { 

Given comments 
predict topic for each, 
and summarize inc. 

topic histogram.

Categorize comment ….
c: { … } t: { 10mins }
c: { … } t: { summer }

c: { … } t: { vegan }
c: { … } t: {

Few-shot

* Give a few examples
* Order & choice  might 
affect results
* Many ways to choose 
in-context examples.
* temperature, sampling



Self-critique

Iterative interaction to 
improve the model. 

Sort of bootstrapping.

By asking the model 
to verify output of 

each step.

Retrieval 
Augmented

Augment with external 
memory.

Steps can include 
searching on the net 
or a database (logs, 

history etc.)

Tool 
Augmented

Augment with external 
tools, APIs, **

Steps can include calls 
to tools e.g. write and 

execute code.

Enrich your Chain-of-Thought Template



Chain-of-thought

* Walk through steps
* Ask model for 
intermediate outputs
* Give examples
* Ask model to verify steps
* Make a template of the 
above (e.g. ReAct, Tree of 
thought)

Zero-shot

* State your task
* Give the input
* For very long 
instructions, having 
some formatting “{}” 
might help.

Prompt-tune, 
LoRA

O(100) examples

Tuning

Summarize feedback 
from the comments.

c1: { … }, c2: {...}, … 
summary: { 

Given comments 
predict topic for each, 
and summarize inc. 

topic histogram.

Categorize comment ….
c: { … } t: { 10mins }
c: { … } t: { summer }

c: { … } t: { vegan }
c: { … } t: {

Fine-tune
O(1000) examples

Few-shot

* Give a few examples
* Order & choice  might 
affect results
* Many ways to choose 
in-context examples.
* temperature, sampling



Parameter-Efficient Tuning - LoRA

Pre-trained Models
(Frozen)

Input TextTunable
weights

Parameter Efficient 
Tuning

Pre-trained Models
(Frozen)

Input TextEngineered 
Prompt

Pre-trained Models
Tuneable

Input Text

Fine-tuning

Sample expensive

Slow iteration
Sample efficient

Quick iteration

Weaker quality

Sample efficient

Quick iteration
High quality High quality

Efficient Multitask Serving Efficient Multitask Serving
Single Task Training & Serving

high training & deployment cost Low training & deployment cost

Prompt Engineering



Full Version



Background

Zero-shot, Few-shot

Consistency decoding

Learned prompt tokens

Instruction Tuning

Chain-of-Thought (+ with-action)

Retrieval augmented

Tool augmented

RLHF

00

01

02

03

04

05

06

07

08

Overview



Background: Model architectures

Encoder-only ● BERT

● Pre-train then fine-tune

Encoder-Decoder ● T5 

● Pre-train, fine-tune

Decoder-only ● LaMDA, PaLM, GPT, OPT, ChatGPT

https://arxiv.org/abs/1810.04805
https://arxiv.org/pdf/2204.05832.pdf


Background: Pre-training

std. enc-dec Causal LM Prefix LM Masked LM

May <X> be with you
Inputs

<X> the force 
Targets

￼

figs: T5

https://arxiv.org/abs/2204.05832


Background: Scaling and zero shot capabilities 

? GPT4

?

fig: GPT3

https://arxiv.org/abs/2005.14165


Zero-shot? Adapting learned patterns to new situations



Fine-tuning

Enhanced for certain 
interactions. O(1000) 

to O(M) examples.
E.g. PaLM-Coder, 

Codex

Pre-training

Self-supervised, on 
lots of examples 

O(Trillion) tokens.
E.g. LLAMA

Model training

RL w. Human 
Feedback

Tuned to help model 
guess better under 

uncertainties. O(1000) 
examples.

E.g. Bard, ChatGPT

Prompt-tuning

Steered for focused tasks. 
O(100)examples

Prompting 
Steered for a query. O(1) 
examples (usually 0-8)



Fine-tuning

Enhanced for certain 
interactions. O(1000) 

to O(M) examples.
E.g. PaLM-Coder, 

Codex

Pre-training

Self-supervised, on 
lots of examples 

O(Trillion) tokens.
E.g. LLAMA

Model training

These slides = (Prompting + prompt-tuning and a dash of fine-tuning)

RL w. Human 
Feedback

Tuned to help model 
guess better under 

uncertainties. O(1000) 
examples.

E.g. Bard, ChatGPT

Prompt-tuning

Steered for focused tasks. 
O(100)examples

Prompting 
Steered for a query. O(1) 
examples (usually 0-8)

Pre-training, instruction based fine-tuning, RLHF - usually successive



Instruction 
tuned

Answer yes or no. 
Cheetahs are faster 
than hares. Answer:

E.g. FLAN-PaLM, 
InstructGPT

Raw LM

Continues to predict 
next tokens following 
a prompt

E.g. LLAMA, GPT3

Dialog tuned

[Alice] where is eve?
[Bob] she is out. 

[Alice] shall i call her in?
[Bob]: …

E.g. BlenderBot, Koala

RLHF

Human-Feedback to 
improve the model’s 

responses under 
uncertainties. 

E.g. Bard, ChatGPT

Available models



Models from different stages respond differently
Raw LM Trained to 

follow 
instructions

+ Dialog 
+ …
+ RLHF 

(as do different models)
PaLM, GPT3.5, Claude, LLAMA

Instruction Tuned

RLHF model



Note, LLMs are finicky



Background

Zero-shot, Few-shot

Consistency decoding

Learned prompt tokens

Instruction Tuning

Chain-of-Thought (+ with-action)

Retrieval augmented

Tool augmented

RLHF

01

02

03

04

05

06

07

08

Shapes of 
Prompt 
Engineering



References are not exhaustive. If something is 
incorrect or I’m missing your work or 
references to works you like PLMK!



Alice bought 5 balloons for 50 cents. Each 

balloon costs

Zero-shot: State your problem



Solve these math problems involving money.

Question: Alice bought 5 balloons for 50 cents. 

Each balloon costs

Answer:

Zero-shot with instruction



Zero-shot conditional prompts

Write a short story about friendship in 
2000 or fewer words.

constraint 
based

Write a sentence where the first letter of 
each word forms the acronym i i p i t b.

You are Jeff Dean, one of the world’s best 
programmers and software engineers. Write an 
efficient program to …

priming



Few-shot (In-Context Learning): Give some examples

2-shot

Alice bought 5 balloons for 50 cents. Each balloon 
costs
Answer: 10 cents

An ice pop cost 2 cents. Bob wants 3 ice pops. He 
has to pay
Answer: 6 cents

Eve bought 2 pencils from Dan, each costing 50 
cents. Eve owes Dan
Answer: 



Few-shot (In-Context Learning): Give some examples

2-shot, with instructions

Solve these math problems involving money.

Alice bought 5 balloons for 50 cents. Each balloon 
costs
Answer: 10 cents

An ice pop cost 2 cents. Bob wants 3 ice pops. He 
has to pay
Answer: 6 cents

Eve bought 2 pencils from Dan, each costing 50 
cents. Eve owes Dan
Answer: 



Issues leading to high variance
● Order of the few-shot examples matters

● Recency bias - preference for last

● Majority label bias - preference for majority class in the answers

● Common token bias - higher production of tokens that are more frequent

Few-shot has high variance, bias

Different few-shot examples 
(and permutations).

Different prompt formats 
(and few-shot examples)

credit: Zhao et. al.
Plots showing high 
variance in accuracy 
for different prompts

https://arxiv.org/abs/2102.09690


Few-shot variance: Mitigation strategies

Mitigation strategies
● Select diverse examples

● Select few shot samples relevant to the test sample

● Ensure random order

● Calibrate on content-free examples



Calibration

● Calibration W*p + b

● Fit calibration parameters such that prediction for all labels on N/A is uniform

● Content-free inputs = {“N/A”, “[MASK]”, “”}

● p_cf = class probabilities on content-free inputs

● W = diag(p_cf)-1 ,b=0; For generation, b= -p_cf of first token (W is Identity)

Few-shot variance mitigation: Calibration

credit: Zhao et. al.

https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2102.09690


● Choose nearest train/val examples in embedding space 
○ KATE-kNN based on BERT/Roberta/XLNet embeddings
○ Vote-k  Clusters and select diverse and representative samples

■ Select different few-shot examples for each test query.
● EPR - Trains a dense retriever (using the task training set) to select few-shots

○ Given(x,y) uses unsupervised retriever (e.g. BM25) to select similar (p,q)
○ Scores P(y| p, q, x) and assigns (p,q) as +ve or -ve
○ Uses contrastive learning to train a retriever on the labeled examples.

● Active-Prompt - active learning to select most uncertain examples to annotate
○ Unlabeled query + zero or few-shot examples → sample k answers
○ Determine uncertainty from samples, and annotate uncertain examples
○ Use annotated examples as few-shot examples for the real test queries

Selecting few-shots

https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2209.01975
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2302.12246


Self-consistency sampling a.k.a Consistency Decoding

Self-consistency: 
Wang ’23

“Where is the dog?”

Fine-tuned or prompted LLM
Temperature-based batch sampling

Multiple samples

Rank by frequency

in its pen in the backyard (1)
it is probably in the backyard (2)
it is playing in the backyard (3)
in its place in the bedroom (1)
it is probably in the back (1)

Image: Cai ‘22

https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2205.03767


● For conditional prompts, verify whether the condition is satisfied

Self-consistency alternatives

Write a summary of this webpage in 1000 or 
fewer words.

Write a sentence where the first letter of 
the words start with a b c d



● For conditional prompts, verify whether the condition is satisfied

Self-consistency alternatives

Multiple samples

Rank by frequency

Filter for conditionWrite a summary of this webpage in 1000 or 
fewer words.

Write a sentence where the first letter of 
the words start with a b c d



● For conditional prompts, verify whether the condition is satisfied

Self-consistency alternatives

Write a summary of this webpage in 1000 or 
fewer words.

Write a sentence where the first letter of 
the words start with a b c d

● For coding problems

○ Write unit tests → run through interpreter → verify and select results that pass the unit test

Multiple samples

Rank by frequency

Filter for condition



Learned Prompt Tokens

Idea: prompts are prefix-tokens and can be treated as 
trainable params. 

optimize for prompts directly in the token/embedding space



● Usually only learn a small number of trainable params.

● Usually task-specific.

● Keeps the model frozen. So steer the LM.

● Works well with smaller amount of examples 

○ especially, if you have lot more examples than few-shot

○ can also learn on full training data

● In low data setting (O(10) - O(103)) can outperform fine-tuning.

● Comparable to or outperform linear-probing.

● Better generalization to OOD examples not in training.

● Still serve only the frozen model! Modify query with learned prompt.

Learned Prompt Tokens - Pros



Learned Prompt Tokens - AutoPrompt

● For Masked LMs.

● Learned triggers appear to generalize to other models! (BERT, RoBERTa, GPT-2)

Learns a set of “trigger” tokens using gradient-based search.

Learn the trigger tokens
atmosphere, alot, 
dialogue, …

AutoPrompt - Shin ’20
Triggers - Wallace ‘19

Apply same triggers to all examples.

https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/1908.07125


Learned Prompt Tokens - Prefix-Tuning

● Add prefix embeddings [PREFIX;x;y] 

● Additional embeddings in all the transformer layers.

● It’s parameterized as

○ A smaller matrix - prefix length x c

○ Feedforward MLP - c x emb_dim

● [x;INFIX;y] didn’t work as well.

● Initialization - real words better than random.

Prefix-Tuning Li & Liang ‘21

https://arxiv.org/abs/2101.00190


Learned Prompt Tokens - P-tuning

● Additional embeddings only in the input encoder.

● Follows this template T = {[P0:i], x, [Pi+1:m], y}

● With encoder it gets mapped to 

○ {h0, ..., hi, e(x), hi+1, ..., hm, e(y)}

● Optimize and learn the hi directly

● It’s parameterized as

○ Hidden layers of an LSTM followed by MLP

○

● Initialization - with embeddings of real words
P-tuning Liu ‘21

https://arxiv.org/abs/2103.10385


Learned Prompt Tokens - Prompt-tuning

● Similar to prefix-tuning [P0:k;x;y]

● Only in the input embedding layer.

● P-> k x emb_dim, x-> n x emb_dim

● Initialization: the following were better than random

○ Can use embedding values of class label strings

○ Sample from top (frequent) 5K words in vocab

Prompt-tuning Lester ‘21

https://arxiv.org/abs/2104.08691


● Number of tokens.

○ Prefix-tuning: 200 for summarization, 10 for Table-2-text

○ Prompt-tuning: 5 to 100

● Great to try for low data setting.

● Initialization.

○ Embedding initialized with frequent words >> random init.

● *Promising for personalization - only store small set of weights*

● *You still only serve the main frozen model!*

Learned Prompt Tokens - Implementation notes



Keep model frozen and adapt some layers when tuning (supervised fine-tuning).

Related: Adapters and Low-rank Adaptation  (fine-tuning)

PEFT Houslby’ 19 LoRA

Can keep frozen model and share just weight for adapter layers.

https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685


Parameter-Efficient Tuning - LoRA

Pre-trained Models
(Frozen)

Input TextTunable
weights

Parameter Efficient 
Tuning

Pre-trained Models
(Frozen)

Input TextEngineered 
Prompt

Pre-trained Models
Tuneable

Input Text

Fine-tuning

Sample expensive

Slow iteration
Sample efficient

Quick iteration

Weaker quality

Sample efficient

Quick iteration
High quality High quality

Efficient Multitask Serving Efficient Multitask Serving
Single Task Training & Serving

high training & deployment cost Low training & deployment cost

Prompt Engineering



fine-tuning a language model on a collection of tasks 
described via instructions in different ways —improves the 
zero-shot performance of language models on unseen tasks.

Instruction Tuning

FLAN,  T0

https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2110.08207


1. Cluster different NLP tasks into categories. 

a. Classification, Entity Recognition, …

2. Generate templates for describing the instruction for each task cluster/category.

3. Apply generated instruction templates for tasks in the cluster; for all clusters.

4. Fine-tune model on generated (instruction, input, ground truth output) data

Instruction Tuning

Supervised fine-tuning to teach the model 
to perform many NLP tasks.

zero-shot!

image: FLAN

https://arxiv.org/abs/2109.01652


Generate many (~10) natural instruction templates for each task.

Some (2-3) templates reverse the task e.g. movie review rating task:
Forward template: Given {{review}}. The rating for this review is {{rating}}
Reverse template: Given {{rating}}. A plausible review is {{review}}

Instruction Tuning: Templates

image: FLAN

https://arxiv.org/abs/2109.01652


Instruction Tuning: Apply templates to examples

image: T0

https://arxiv.org/abs/2110.08207


Instruction Tuning: Multi-task fine-tuning



(notes) Instruction Tuning: FLAN vs T0

● Significantly improves performance making smaller models comparable to larger 

models having 6x-16x more params.

● Concurrent, mostly similar conclusions

● Works well on enc-decoder (3B, 11B) and larger decoder-only (>8B) models

● For generation (sentence completion tasks) instructions don’t matter, perhaps 

better to even remove.

● T0’s templates are more diverse qualitatively - adding more prompts improves 

performance (whereas FLAN sees some saturation).

● Prompt, template, datasets: promptsource, self-instruct, (internal flan-tuning)

INSTRUCTOR Instruction tuning also works for models used to generate embeddings!

https://github.com/bigscience-workshop/promptsource
https://huggingface.co/datasets/yizhongw/self_instruct
http://go/pax/language_models/ulm_finetune_guide#fine-tuning-on-flan
https://instructor-embedding.github.io/


Instruction Tuning + few-shot multi-task

Definition: Determine the speaker of the dialogue, “agent” or “customer”. 
Input: I have successfully booked your ticket. 
Output: agent

Definition: Classify a given post into 1) ‘Similar’  and 2) ‘Dissimilar’. 
Input: Sentence1: Should I ask to be [..] 
Output: Dissimilar

Definition: Detect which category […] , “Quantity”, and “Location”. 
Input: What is the oldest building in the U.S?
Output: Location

Definition: Answer a given question containing a blank (_).
Input: Jon ate the oatmeal [..] _ was spoiled. 
Output:

ICIL
Few-shots 
of 
different 
tasks
even after 
instruction
-tuning 
helps 
improve 
results.

https://arxiv.org/abs/2302.14691


LLMs to generate, score and rephrase instructions

APE (Zhou ‘23)

Choose the instructions that score higher on the desired target

https://arxiv.org/abs/2211.01910


Bootstrapping an LLM to generate and annotate 
data

Self-instruct
Start with a small seed set of tasks (1 instruction and 1 input-output instance) per task.
1) instruction generation (via few-shot=8, 6 human, 2 model) 
2) identifying whether the instruction represents a classification task or not, (via few-shot)

This determines whether you want to first sample a class label and then the data.
3) instance generation with the input-first or the output-first approach (reduces label bias for classification tasks)
4) filtering low-quality data
Result → 52k instructions, 82k instances

https://arxiv.org/abs/2212.10560


LongForm

LLMs to generate instructions in different styles

Zero-shot template for 
different styles

Results show good performance for generation tasks requiring longer responses.

https://arxiv.org/abs/2304.08460


Chain-of-Thought

Idea: Make the model reason and output intermediate steps



Chain-of-Thought (CoT)

CoT Wei ’22

https://arxiv.org/abs/2201.11903


Chain-of-Thought (CoT)

CoT Wei ’22

Three cats and two birds have how many legs? 
Answer: Let’s think step-by-step. 

zero-shot

few-shot

Kojima '22

https://arxiv.org/abs/2201.11903
https://arxiv.org/pdf/2205.11916.pdf


Zhou ‘23

Chain-of-Thought (CoT): Phrasing matters

● Changing ‘Q’ to ‘Question’, 
● separating CoT steps with ‘\n’ (as opposed to `step i`)

Fu ‘22

https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2210.00720


CoT - bootstrapping strategies

● CoT can hurt performance marginally on some NLP benchmark/tasks. [Ye & Durrett ‘22]

○ E.g. NLI, when explanation is non-factual

● Augment with model generated rationales [Wang et. al. ‘22]

○ Have the model generate explanations along with the answer. [Weigreff ‘22]

○ Ensemble based on the answers and pick based on majority.

● STaR - Self Taught Reasoner [Zelikman’22]

○ Few-shot with CoT → bootstrap to generate rationales on larger dataset.

○ Then fine-tune on examples with rationales that yielded correct answers. Repeat

● Complexity-based consistency - choose rationales with more steps when ensembling

○ Works for math and complex reasoning tasks.

○ May not work on simple QA tasks [Shum ‘23]

https://arxiv.org/abs/2205.03401
https://arxiv.org/pdf/2207.00747.pdf
https://arxiv.org/abs/2112.08674
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2210.00720
https://arxiv.org/abs/2302.12822


CoT - bootstrapping strategies

● Auto-CoT - Generate few-shot CoT examples.

○ Cluster questions in embedding space. Select question from each cluster.

○ Generate zero-shot CoT using heuristics (Let's think step by step)
■ Errors for rationales also tend to cluster, hence selecting examples from each cluster of questions prevents errors.

● Augment, Prune, Select [Shum ‘23] 

○ Augment each input, output with model generated rationale.

○ Prune to only keep those examples where the final answer is correct. 

■ Gives K high quality exemplars

○ Select: use variation reduced policy gradient estimator

■ Learn prob dist. over exemplars on a train set (similar task)

■ Prob. dist. over examples -> policy, val set accuracy -> reward

https://openreview.net/forum?id=5NTt8GFjUHkr
https://arxiv.org/abs/2302.12822


Retrieve from LM’s memory 

Liu ‘22

When given a question
1. First generate knowledge from model’s memory
2. Then produce answer

Indicates model can follow some templates.

https://arxiv.org/abs/2110.08387


CoT templates enable composability

Self-Ask [Press ‘22]

● CoT helps multi-hop reasoning.
● Add structure and ask follow-up questions
● Intermediate answers answered by model

Having structure and template in CoT examples is more 
powerful in improving performance on compositional 
tasks.

https://arxiv.org/abs/2210.03350


CoT templates enable composability
Self-Ask [Press ‘22]

● CoT helps multi-hop reasoning.
● Add structure and ask follow-up questions
● Intermediate answers answered by model

Having structure and template in CoT examples is more 
powerful in improving performance on compositional 
tasks.

● Structure allows to add search engine query

https://arxiv.org/abs/2210.03350


CoT templates enable composability w. tools

IRCoT Trivedi '22
Interleave Retrieval with Chain of Thought

ReAct Yao’22
Reason + Act

https://arxiv.org/abs/2212.10509
https://arxiv.org/abs/2210.03629


Self-critique

Iterative interaction to 
improve the model. 

Sort of bootstrapping.

Retrieval 
Augmented

Augment with external 
memory

Tool 
Augmented

Augment with external 
tools, APIs, **



Self-correct

Generator and 
Corrector are 
different 
models.

value function 
is a classifier

Self-Critique: Bootstrap LLM to correct it’s 
outputs

https://arxiv.org/abs/2211.00053


Self-critique: LLM to correct itself iteratively

Build on ReAct framework. No policy is learned.

Heuristic (h) →decides to reflect if {a,o} has been repetitive or t (time steps) is large.

Reflection: LLM w. 2-shot prompt specific to dataset/task. Something like:
● I was stuck in loop where < obs. was repeated>. It did not help. Instead <what the agent should have done>
● In this environment <the task was X>. I did <something in a different order>. Next time I should do <...>

Reward - binary. Is the action valid (in case of RL environment) or final answer correct.
Action space - few-shot prompt demonstration of permissible actions.

Reflexion

134 tasks in AlfWorld

https://arxiv.org/abs/2303.11366


Self-Debug

self-debug

https://arxiv.org/abs/2304.05128


Retrieval Augmented LM

Retriever
(neural encoder, search)

Generator
(LM)

query
query

relevant 
context

ranked 
results

Answer

Variations based on how you train the retriever and how you integrate the retrieved 
information into the answer.



Retrieval augmented LM

● User submits a query

● Retriever - essentially “search” but in LM papers it’s also differentiable

○ Consists of data - passages that are indexed e.g. via an encoder using a neural 

model

○ The query is encoded

○ Use similarity to retrieve relevant documents (ScAM, ScaNN, Faiss)

○ Rank top-n by relevance

● Generator - I think of “web answers”

○ Combines query and top-n responses

○ Composes answer

FiD

https://arxiv.org/abs/2007.01282


Augmented models survey Mialon’23

Retrieve from external knowledge base - 
variants 

Fine-tuning

RAG
Izacard ‘20

ATLAS - 
pre-training+few-shot

End-to-end

REALM
EMDR

Frozen (+ layer 
tuning)
RETRO

kNN-LM

Search+Prompt

LaMDA, BlenderBot, 
He’ 23

Train the retriever 
and generator 

jointly end-to-end

Fine-tune the 
retrieval model

Keep retrieval model 
frozen, tune layer 

integrating generator

Keep retriever and 
generator frozen. 
Engineer prompt.

https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2106.05346
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2208.03188
https://arxiv.org/pdf/2301.00303.pdf


Augmented models survey Mialon’23

Lazaridou ‘22 - placing the retrieved knowledge / evidence 
before asking the question is better

How to combine: 
(a - answer, q - question, pi - passage)

● Retrieval Augmented Generation - RAG ‘20
● Noisy-channel inference - Lewis ‘19
● Product of experts (PoE) 

Get probs by using LM with few-shot prompt and scoring.

Retrieve from external knowledge base 

He ‘22 Retrieve from KB and add to prompt

https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2203.05115
https://arxiv.org/abs/2005.11401
https://openreview.net/forum?id=Bkx0RjA9tX
https://arxiv.org/abs/2301.00303


Tool 
Augmented

Use external tools, 
APIs, databases

query
steps to solve
planning
reasoning

solution
use answerquery tool

Offload computation to tools 
(“expert models”)

1. Know when to use the tool

2. Generate the inputs to the tool

3. Incorporate results

4. Repeat as needed

Tool Augmented Models



Drori ‘21 used LLM tuned 
on code.

MRKL

LLM extracts information 
and generates 
inputs/arguments to the 
tools or APIs 

PAL  and PoT add Python interpreters building 
on Chain of Thought

Tools
● Calculators
● Search 

Engines
● Calendar
● Weather API
● Database

TALM

Tools incorporated with 
few-shot, CoT examples, and 
templates like ReAct work with 
no additional tuning on LLMs!

https://arxiv.org/abs/2112.15594
https://arxiv.org/abs/2205.00445
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2205.12255


TALM Iterative Self-Play to finetune 
model for diverse 
invocations of API

https://arxiv.org/abs/2205.12255


TALM Iterative Self-Play to finetune 
model for diverse 
invocations of API

Toolformer

Generate annotations using few-shot on self-supervision data. Filter and then do 
supervised tuning.

Few-shot 
bootstrap 
on 
unlabeled 
data. 

Sample 
(t=i) when 
to call.

Which API 
and 
arguments 
to pass.

Self-supervised loss on 
whether doing the API call 
and the result helped. Based 
on log prob of actual ground 
truth tokens.

Incorporate 
results.

Use the process to annotate pre-training data and then finetune.

https://arxiv.org/abs/2205.12255
https://arxiv.org/abs/2302.04761


Interact with LLMs iteratively with prompt engineering, and 
retrieval and tools.

Cascades / Chaining



Human Feedback

Align with human preferences to reduce hallucinations, 
improve response under uncertainities, and calibrate model

See John Schulman’s talk

https://www.youtube.com/watch?v=hhiLw5Q_UFg
http://www.youtube.com/watch?v=hhiLw5Q_UFg&t=2108


InstructGPT

https://arxiv.org/abs/2203.02155


StackLlama

Reward model (rθ) → trained separately on 
sets of K responses & query (x,yw), (x,yl).

StackLLama K=2, InstructGPT K=4to9

Same original model, but 
this is not updated.

KL - to ensure the 
response doesn’t 
deviate too much (so 
that RL doesn’t find 
some way to exploit the 
reward model)

GPT4 - zero shot classifiers as rule based 
reward models (RBRM)

https://huggingface.co/blog/stackllama


GPT4

Model calibration and RLHF

https://arxiv.org/abs/2303.08774


● Models hallucinate and can make up information. Unreliable.

○ It has the shape of the answer, but can be incorrect.

● Don't express uncertainty well  e.g. They don't yet ask for clarification. 

● Programming via prompts poses a significant security risk

○ Jailbreaks

○ Also apps that are chained could perhaps be rigged.

■ Ex. injecting stuff into python interpreter

● Cost - LLM agents (e.g AutoGPT) can spawn several threads compounding costs.

● More …

Issues

https://github.com/Significant-Gravitas/Auto-GPT


● Grounding

● Reduce hallucinations 

● Concept of time

       Cost - architecture and optimization to reduce training and serving costs

● Smaller performant models  - personalization? On-device?

● Training full model vs adapt small set of weights

○ LoRA (low rank Adaptation)

○ Adapters

● Inference latency

○ Model  distillation, Quantization (to8bit)

○ LoRA has better inference than adapters

Directions 



Directions 

Baby-AGI, AutoGPT

Given a goal in natural language, can attempt to 

achieve it by breaking it into sub-tasks and using the 

internet and other tools in an automatic loop

Execute and 
save results

Pick a task

List of tasks

Problem

New tasks and 
re-prioritize

Update list

Observe, plan, reflect. 

Social Simulacra

ChemCrow

Chameleon, HuggingGPT

Solve multi-step problems using different tools.

Accelerating science workflows.

Boiko ‘23

https://github.com/yoheinakajima/babyagi
https://github.com/Significant-Gravitas/Auto-GPT
https://arxiv.org/pdf/2304.03442.pdf
https://arxiv.org/abs/2304.05376
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2304.05332


May 26 Update: Watch 
Karpathy’s State of GPT talk at 
Microsoft Build

* Karpathy’s State of GPT talk

http://www.youtube.com/watch?v=bZQun8Y4L2A
https://youtu.be/bZQun8Y4L2A


● Need a common benchmark for evaluation.

● Choice of model can depend on 

       Shape of the problem.

○ One-shot generation / phrase completion e.g. code completion

○ Interactive e.g. dialog and instruction tuned

● Amount of data.

○ 1-8 fewshot

○ 10-100s (or 1000) Prompt tune

○ O(1000) Fine tune

● Most problems are not solved with a one-shot query. 

○ Problems steering towards O(n) queries to the LLM.

Remarks



● This deck

○ text only models

○ If I have missed references or not listed your work please let me know

● Costs

○ #tokens in the input query or context

○ #tokens in the response

○ Time for learning prompts / tuning

Notes 



● Lillian Weng blog

● OpenAI Cookbook 

● Langchain

● Prompt Engineering Guide

● Learnprompting.org

● PromptPerfect

● Semantic Kernel

References

https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://github.com/openai/openai-cookbook
https://langchain.readthedocs.io/
https://github.com/dair-ai/Prompt-Engineering-Guide
https://learnprompting.org/
https://promptperfect.jina.ai/
https://github.com/microsoft/semantic-kernel

