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Why study speech intelligibility?

how well speech ic understood by a human listener.

Will ASR on device work for you?  Can users monitor deterioration? Improve video transcriptions.
Or do you need a custom model? Across different speaking disorders. Collect disordered speech at scale.




Data

Project Euphonia

focused on helping people with atypical speech be better understood

g.co/euphonia, g.co/projectrelate



http://g.co/euphonia
http://g.co/projectrelate
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Euphonia-SpICE dataset: >750K utterances, 650+ speakers

Table 1: Count of speakers and utterances in Euphonia-SpICE.

Intellicibilit # speakers # utterances
ST Train Val. Test| Train Val. Test
TYPICAL 161 41 25 (149,941 24,142 10,664
MILD 161 29 37 (208,843 22,532 39,007
MODERATE| 83 23 19 |124,984 48,814 21,214
SEVERE 54 12 15 | 60,692 13,868 22,397
PROFOUND | 9 4 4 | 6,716 1,691 642
OVERALL | 468 109 100|551,176 111,047 93,924

All roughly similar distribution



The Euphonia-SpICE dataset: Diverse etiologies

wn Syndrome 19.9%

Cerebral Palsy 9.9%
Parkinson's Disease 9.6%
Missing 9.6%

Stutter 4.4%

Hearing Impairment 2.8%
Ataxia 2.8%

Muscular Dystrophy 2.1%
Stroke 2.1%

Other 1.9%

WNL 1.6%

Multiple Sclerosis 1.2%
Traumatic Brain Injury 1.2%
Spasmodic Dysphonia 0.9%
Primary lateral sclerosis 0.7%
Palate 0.7%

Aphasia 0.6%

Multiple System Atrophy 0.6%
Vocal Chord Paralysis 0.4%
Spinal Muscular Atrophy 0.4%
Laryngectomy 0.3%

] Childhood Apraxia 0.3%
1 IFTD 0.3%
1 Cerebellar Disease 0.1%
1 AT 0.1%
. Neuromuscular Disorder 0.1%
Accent 0.1%

etiology

test
mm validation
N train

Brain Tumor 0.1%
Lisp 0.1%

5 10 15
speakers (%)

20 25
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Previously - pilot study on Euphonia Quality Control data

'Buy Bobby a puppy.' 'Sadder."’ 'Banter.’', ‘o .
'T owe you a yo-yo today.' 'Chatter.' 'Shatter.’ Euph0n|a Quallty

'"The police helped a driver.' 'Batter.' 'Tatter.', Control dataset (29

'The boy ran down the path.' 'Meaner.' 'Patter.’, .

'The fruit came in a box.' 'Eater.' 'Ladder.' phraseS) with SLP-rated
! ' 'Manner.' 'Bladder." . . el eps

£0% TP Shoces Tom ERER . C , speech intelligibility.
'Strawberry jam is sweet.' Platter. Banner.

'Flowers grow in a garden.' 'Heater.'

'He really scared his sister.' 'She looked in her mirror.'

'The tub faucet was leaking.' 'A match fell on the floor.'

'He said buttercup, buttercup, buttercup, buttercup all day.'
'Bamboo walls are getting to be very popular because
they are strong, easy to use, and good - looking.'

Histogram of phonemes in the datasplit (n=15245)

0.08

)

20.06

8

o

©0.04

o}

a

0.02

0.00
S WUIoOT>OIOIIc>DII>XI¥diszozzxxaoaxnwIEFITIIZT>>NTI
_§Sf<(_<<;,:_<b9:oo_“-1‘-'-“-‘”QbIsz‘nnbhzgpnbn@nl—:%b%nb[\l
2 8 o o 5 <@ o o o o Q@ o) o g @ Q 'Q:Q:Q o}

Ph
Comparing Supervised Models And Learned Speech Represeor?fations For Classifying Intelligibility Of Disordered Speech On

Selected Phrases. S. Venugopalan, J. Shor, M. Plakal, J. Tobin, K. Tomanek, J. R. Green, M.P. Brenner. INTERSPEECH 2021
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https://drive.google.com/file/d/1YBlDkUE3mYFPGjG823OkbxeZfUNoFLGL/view?usp=sharing
https://drive.google.com/file/d/1YBlDkUE3mYFPGjG823OkbxeZfUNoFLGL/view?usp=sharing
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... and trained classifiers based on different approaches.

Supervised CNN

Standard for audio classification [1]

———
-

| intelligibility |

[1]1 Hershey et. al. CNN Architectures for
Large-Scale Audio Classification ICASSP “17

INTERSPEECH 2021

Unsupervised representations

Classifiers on top of non-semantic speech

representations (TRILL) [2]

(Pre-training objective)
Triplet Loss

Anchor Anchor

---.._ Negative Positive @ -~

[2] Shor et. al. Towards Learning a Universal
Non-Semantic Representation of Speech (TRILL)
INTERSPEECH 20

ASR encoder representations

RNN-T model trained on typical speech [3]

p(llt,u)

T

Softmax
/'y Za

Joint Network
8u fi /

Pred. Network Encoder

B T

Xt

3

lu—l

[3] Narayanan et. al. Recognizing longform speech in

end-to-end models ASRU ‘19
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https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/2002.12764
https://arxiv.org/abs/2002.12764
https://arxiv.org/abs/1910.11455
https://arxiv.org/abs/1910.11455
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This work - we wanted a public model competitive to ASR encoder

LEAF + CNN

Learnable frontend [4]

MEL FILTERBANKS

; | FIXED FIXED FIXED
- - - - |

LEAF
wo C I

[4] LEAF: A Learnable Frontend for Audio
Classification ICLR 21
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https://arxiv.org/abs/2101.08596
https://arxiv.org/abs/2101.08596
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This work - we wanted a public model competitive to ASR encoder

LEAF + CNN

Learnable frontend [4]

MEL FILTERBANKS

wav2vec2

Transformer+CNN [5] and is open-source
and includes model weights.

4 FIXED FIXED FIXED |
- - N - |

LEAF

pdhgld T oo

[4] LEAF: A Learnable Frontend for Audio

Classification ICLR 21

Contrastive loss
Context C
representations T T T T

Quantized
representations Q

Latent speech 2
representations

[5] wav2vec 2.0: A Framework for Self-Supervised
Learning of Speech Representations NeurlPS ‘20
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https://arxiv.org/abs/2101.08596
https://arxiv.org/abs/2101.08596
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
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This work - we wanted a public model competitive to ASR encoder

LEAF + CNN wav2vec2 ASR encoder representations

Learnable frontend [4] Transformer+CNN [5] and is open-source RNN-T model trained on typical speech [3]

and includes model weights.

) i} MEL FILTERBANKS
o - - - | ol )
LEAF T
e ol R e W |Q.
Softmax

Contrastive loss A
Zu

rprssatatons C " ﬁ fﬁ ;i i Joint Network
A gu ﬁ /

Quantized
representations Pred. Network Encoder
Latent speech I T
representations
lu -1 x,

[5] wav2vec 2.0: A Framework for Self-Supervised
Learning of Speech Representations NeurlPS ‘20

[3] Narayanan et. al. Recognizing longform speech in
end-to-end models ASRU ‘19

[4] LEAF: A Learnable Frontend for Audio
Classification ICLR 21
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https://arxiv.org/abs/2101.08596
https://arxiv.org/abs/2101.08596
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/1910.11455
https://arxiv.org/abs/1910.11455
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Classification tasks and metrics

2 class MILD+: 0{TYPICAL}, 1: {MILD, MODERATE, SEVERE, PROFOUND}
5 class classification tasks

AUC, F1 and Acc. as evaluation metrics



Will the model generalize?

Without any training

On different datasets

With different data collection processes
Speakers with different etiologies
Realistic speech setting

Google Research
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ASR-enc and SpICE wav2vec2 generalize “out-of-the-box”

7 controls, 7 - CP/ ALS

TORGO

14 speakers

Speaker wav2vec 2.0 ASR-enc

FCO01
FC02
FC03
MCo1
MC02
MCO03
MCo04
F03
F04
MO3
FO1
MO02
Mo4
MO5

typ. (96.2)
typ. (95.9)
typ. (83.2)
typ. (96.6)
typ. (94.3)
typ. (98.3)
typ. (98.3)
(87.0)
typ. (91.8)
typ. (98.9)
mod. (100)
(100)
sev. (100)
sev. (100)

typ. (96.2)
typ. (100)
typ. (78.4)
typ. (92.4)
typ. (92.6)
typ. (98.3)
typ. (99.2)
(88.0)
typ. (74.2)
typ. (100)
mod. (100)
(100)
nod. (100)
mod. (100)
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ASR-enc and SpICE wav2vec2 generalize “out-of-the-box”

7 controls, 7 - CP/ ALS

Speaker

TORGO

14 speakers

wav2vec 2.0 ASR-enc

FCO1
FC02
FC03
MCo1
MC02
MCO03
MCo04
FO3
F04
MO03
FO1
MO02
Mo4
MO5

typ. (96.2)
typ. (95.9)
typ. (83.2)
typ. (96.6)
typ. (94.3)
typ. (98.3)
typ. (98.3)
(87.0)
typ. (91.8)
typ. (98.9)
mod. (100)
(100)
sev. (100)
sev. (100)

typ. (96.2)
typ. (100)
typ. (78.4)
(yp. (92.4)
typ. (92.6)
typ. (98.3)
typ. (99.2)
(88.0)
typ. (74.2)
typ. (100)
mod. (100)
(100)
mod. (100)
mod. (100)

ALS-TDI

AUC

ALS-TDI

Test set: 90 speakers,

~1330 recordings

“l owe you a yoyo” x 5

B SOTA ™ wav2vec 2.0

Models

ASR-enc

0.82
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ASR-enc and SpICE wav2vec2 generalize “out-of-the-box”

7 controls, 7 - CP/ ALS

Speaker

TORGO

14 speakers

wav2vec 2.0 ASR-enc

FCO1
FC02
FC03
MCo1
MC02
MCO03
MCo04
FO3
F04
MO03
FO1
MO02
Mo4
MO5

typ. (96.2)
typ. (95.9)
typ. (83.2)
typ. (96.6)
typ. (94.3)
typ. (98.3)
typ. (98.3)
(87.0)
typ. (91.8)
typ. (98.9)
mod. (100)
(100)
sev. (100)
sev. (100)

typ. (96.2)
typ. (100)
typ. (78.4)
typ. (92.4)
typ. (92.6)
typ. (98.3)
typ. (99.2)
(88.0)
typ. (74.2)
typ. (100)
mod. (100)
(100)
mod. (100)
mod. (100)

ALS-TDI

AUC

ALS-TDI

Test set: 90 speakers,
~1330 recordings

“l owe you a yoyo” x 5

B SOTA ™ wav2vec 2.0 ASR-enc

0.82

Models

UASpeech

28 speakers

13 - controls, 15 - CP
765 words per speaker

UASpeech

B SOTA ™ wav2vec 2.0

0.94 0.91

Dysarthia only Controls + Dysarthria



Will the model generalize?

4 Without any training.

40n different datasets

4 With different data collection processes
Speakers with different etiologies

Realistic speech setting

Google Research
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SpICE-V benchmark dataset
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SpICE-V data collection : 106 Dysarthric videos

1 Search to filter videos
based on relevant topics.

2 Run « different binary classifier to
tag “regions of interest” (ROIs)
ASR-enc trained additionally on Audio Set (0.5M 3 Further manua_l flllter!ng.
non-speech and 0.6M typical speech utterances) e And SLPS tag/edit “regions
of interest” (ROIs)

SLPs label

e ROI-time segments when dysarthric speaker is speaking
e severity and intelligibility - 5-point Likert
e inferred gender (to help balance)
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SpICE-V distribution

Typical Mild mmm Moderate EEE Severe M Profound Male _
P
_ )
Ataxia 1 5 10 .
)
] 8 =
MS )
] 8 4 @)
CcP ey
4 5 o)
PD O
ALS 4 1 P
w
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SpICE-V Controls: 76 speakers/videos

1. Select videos from AudioSet specifically the category tagged as “Speech”
2. We select from the unlabelled training set of 1M+ videos. Specifically only videos
with tag

a. Male speech, man speaking

b. Female speech, woman speaking

c. Optionally allowing for the tags “Narration, monologue” ( and the tag speech)

d. [detail] We looked at thumbnails of videos to determine - existence of video,
confirmation of male/female speaker.

3. We watched the videos to infer age.

a. We used the title and information tags in the video to look up speaker information as
many of the speakers are somewhat public personalities e.g. sports persons,
politicians featured heauvily.

4. We tried to find as many videos of older people as we could.

a. Intention to reduce bias of young adults and skew towards older age group and match
gender.
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SpICE-V Controls: 76 speakers/videos

Female (32) Male (44)
20-40

40-60

70+

60-70
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Spice-V Results
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Comparing accuracy of identifying atypical speech

w. Typ. Total (Atyp.) wav2vec 2.0 Acc. (%)|ASR-enc Acc. (%)
Group non-ctrl # Utts.  # Spkr spkr utt. spkr utt.
Controls X 76 76 (0) 76.32 76.32 96.42 96.42
Dysarthric (-Typ.) % 1489 76 (76) 93.42 94.83 63.16 66.92
Dysarthric (all) v 2221 106 (76) 77.36 75.64 68.65 67.92
All (-Typ.& Dys.) X 1565 152 (76) 84.87 93.93 78.29 68.21
All v 2297 182 (76) |76.92 75.66 78.57 69.47




Sliced by Etiology
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# Spkr  |wav2vec 2.0 Acc. (%)|ASR-enc Acc. (%)
Etiology # Utt. Total (Typ.)|spkr utt. spkr utt.
ALS 443 21 (4) 1(90.5 87.6 76.2 76.0
PD 498 21 (5) |[85.7 84.9 61.9 73.0
CP 620 25 () |[72.0 69.8 72.0 74.5
MS 352 20 (8) [55.0 57.5 60.0 48.6
Ataxia 308 19(5) |84.2 75.6 68.4 62.1
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Takeaways

We developed & compared different approaches to classifying intelligibility of speech
Our models were trained on utterances from over 650 speakers.

The models generalized well to different datasets - TORGO, ALS-TDI and UASpeech.
Collected SpICE-V dataset of realistic speech from videos.

Dysarthric speakers with typical speech are harder to classify.

Models do well on ALS, PD, CP and Ataxia.

Model and usage

https://github.com/gooaqle-research/gooqgle-research/tree/master/euphonia_spice



https://github.com/google-research/google-research/tree/master/euphonia_spice

