

LARGE LANGUAGE MODELS AS A PROXY FOR HUMAN EVALUATION IN ASSESSING THE COMPREHENSIBILITY OF DISORDERED SPEECH TRANSCRIPTION

Katrin Tomanek¹, Jimmy Tobin¹, Subhashini Venugopalan¹, Richard J.N. Cave^{1,2}, Katie Seaver^{1,3}, Jordan Green^{1,3}, Rus Heywood¹,
¹Google Research, ²Language and Cognition, UCL, ³MGH Institute of Health Professions,
{katrintomanek, jtobin}@google.com

Introduction

WER treats all errors the same

- Word Accuracy and Word Error Rate (WER) are measures of syntactic accuracy and errors of an automatic speech recognition (ASR) model, but they don't measure comprehensibility.
- On atypical speech (e.g. disordered speech), WER is often >20 and sometimes >60 for certain etiologies and severities.
- Individuals with disordered speech may still benefit from an ASR model with relatively high WER, provided that meaning is preserved.
- We aim to create a system that will automatically assess the ability of an ASR model to convey the user's intended message.

Error Type	Predicted Transcript	Actual Transcript	Word Acc.
Deletion	Come right back - I have a head -	Come right back please I have a headache	0.75
Contraction	I'm a bit overwhelmed	I am a bit overwhelmed.	0.60
Normalization	play Beyoncé Okay 9:30 five	play Beyonce Okay, nine thirty five.	0.50
Proper Noun	Here are TV shows by Hugh <i>Griffiths</i> First do you know how the story ends	Here are TV shows by Hugh Griffith Faust, do you know how the story ends?	0.86 0.88
Repetition	What <i>are you</i> are you trying to say to me	What are you trying to say to me?	0.75

Method

Classifiers Predicting Meaning Preservation

- Logistic Regression model on BERTScore+WER
- Logistic Regression model on cosine similarity of sentence embeddings (SentT5, 11b)
- Prompt-tuned LLMs: Flan-T5-XXL (11b) and Flan-cont-PaLM (62b)

Example 1
Input Sequence
Ground truth: {no no there are fifteen hundred total}.
Transcription: {no no there are 50 energy total}.
Transcript preserves the meaning of the ground truth: {
Target Sequence
no}
Example 2
Input Sequence
Ground truth: {He's huggable and lovable and a good with people}.
Transcription: {He's huggable and laughable and a good with people}.
Transcript preserves the meaning of the ground truth: {
Target Sequence
yes}

Model Deployment Decisions

- Personalized ASR models [2] need to be quality checked (usually manually by Speech & Language Pathologists) before deploying to users.
- Word Accuracy does not distinguish well between high and low quality models.
- LATTEScore (LLMs to Assess Transcription Error Score) gives better model quality assessment.

$$\text{LATTEScore} = \frac{\# \text{ Predicted Meaning Preserved}}{\# \text{ Total Examples}} \times 100$$

References

[1] MacDonald et al. Disordered Speech Data Collection: Lessons Learned at 1 Million Utterances from Project Euphonia. Interspeech 2021
[2] Green et al. Automatic Speech Recognition of Disordered Speech: Personalized Models Outperforming Human Listeners on Short Phrases. Interspeech 2021

Dataset

Transcript Comprehensibility Dataset

- 4731 tuples of ground truth (from Euphonia corpus [1]) and (erroneous) ASR transcript along with human-rated meaning preservation label
- Significant inter-annotator agreement when assessing meaning preservation, Cohen's $\kappa = 0.7$

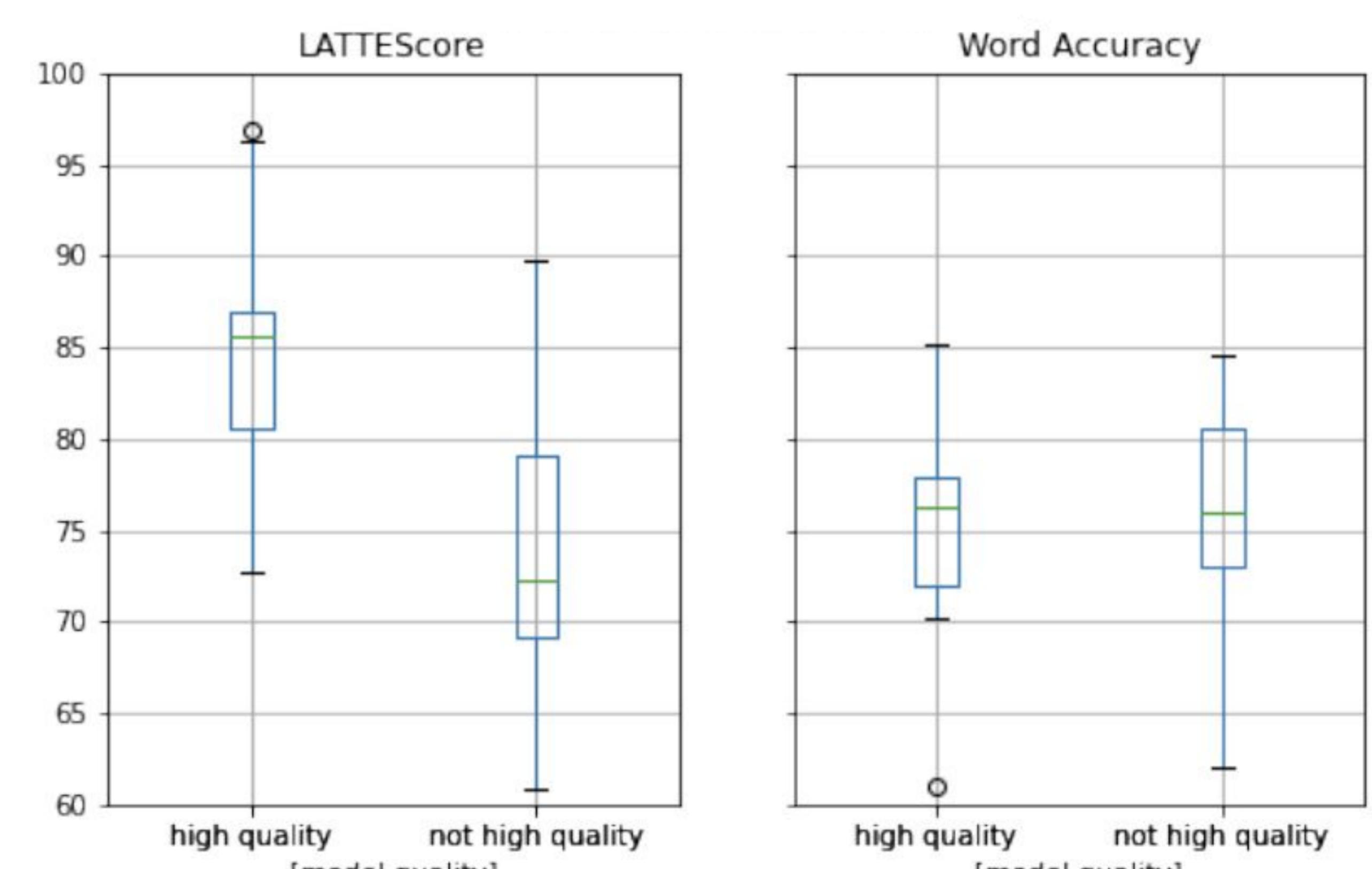
Error Severity	Meaning Preserved	Description	# Examples (%)	Example
0	yes	Meaning is completely preserved	900 (19%)	G: I would be fascinated to know your answers. T: I will be fascinated to know your answers.
1	yes	Some errors, but meaning is mostly preserved.	1145 (24%)	G: Yeah I have one basically every day. T: Yeah I have I'm basically every day.
2	no	Major errors, significant loss of intended meaning.	2686 (57%)	G: How large is that file? T: How large is a funnel?

Results

Classifiers Performance (ROC-AUC)

Approach	Full set (940)	Sliced by severity		
		SEV (467)	MOD (302)	MILD (149)
BERTScore+WER	0.791	0.753	0.791	0.856
SentT5 Emb Sim	0.857	0.813	0.879	0.899
Flan-T5 XXL	0.878	0.836	0.923	0.890
Flan-cont-PaLM	0.900	0.863	0.944	0.903

LATTEScore to Distinguish Model Quality



Conclusion

- We propose a new approach to assess ASR model performance based on comprehensibility rather than syntax preservation.
- LLM-based classifiers perform very well in this task and outperform other classifiers.
- LATTEScore better predicts how useful a model will be to the end user.
- Beyond speech impairment, LLM-based classifiers can be useful for low-resource languages where human evaluation is challenging.
- Future work will explore using multi-lingual LLMs for zero-shot performance in other languages.